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1. INTRODUCTION

The aim of this paper is to study the approximation by a strongly continuous
contraction semigroup of nomnlinear operators 7(¢) (+ == 0) of the identity
operator / for t — 0--. It is concerned with norm approximation —optimal
as well as nonoptimal —in the setting of the theory of interpolation classes
constructed by means of the K-functional of J. Peetre [21]. This will be
carried out in the framework of an arbitrary Banach space X. The corre-
sponding linear theory is treated fully in P. L. Butzer and H. Berens [6] and
H. Berens [2]. For previous nonlinear work in this direction see the note by
D. Brézis [4] which is concerned with Hilbert spaces.

In the linear theory the approximation behavior of a semigroup is
described by the infinitesimal generator (—A4) which is related to it via the
differentiability condition

Af = s = lim [/ = @)1 (i)

It is well known that in the nonlinear theory the classical notion of a
generator has to be extended (see, e.g., the survey articles of J. R. Dorroh [16]
and M. G. Crandali [11] as well as the papers [5], [13-15] and [20]). However,
in the setting of an arbitrary Banach space this problem has not as vet been
solved in a satisfactory manner. The most general result in this direction,
due to M. G. Crandall and T. M. Liggett [13], gives sufficient conditions that
an operator 4 determines a semigroup by the Jimit

TWf = s — lim (L + /Ay,

This is an analog of Hille’s exponential formula, but does not imply (1.1)
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in the general nonlinear case. It is under the assumptions of [13] that we will
treat the approximation problem in question. This requires that we have to
work with the resolvent operator J; :== ({ - t4)™! instead of the integral
! jf] T(u) du used in the linear theory. The family of operators J, (t+ > 0)
also defines a strong approximation process towards the identity /, and we
shall deduce the approximation assertions for T(z) by comparing both
processes. Thereby the estimation of J, by T(¢) depends on an important
lemma of Brézis [3]. This paper also contains complete proofs of results
announced in [22].

Section 2 is concerned with some notations and the basic results of Crandall
and Liggett. In Section 3 we introduce a nonlinear version of the K-functional
and compare it with the resolvent and the semigroup operators. While
Section 4 gives the results in the intermediate class setting, Section 5 is devoted
to relative completion in connection with the saturation problem. An
application to the theory, namely to an initial boundary value problem
considered by Y. Konishi [I8] is left to Note 11 following the present one.

2. PRELIMINARIES

Let X be a real Banach space, X* the dual of X, their norms being both
denoted by |||, and let (f, f *) denote the value of f* e X* at fe X. For a
nonempty subset S C X we set | S| = inf{||f{]; e S}.

Let 7 = {T(t); t > 0} be a family of operators from a subset C C X into
itself satisfying the following conditions

T(t -+ 1) = T(@) T(7), for t, 720, T(0) = 1, 2.1)
s — ljrgl @) = f. foreach feC. (2.2)

[ T f— Tl <<If— gl for 1 20 and figeC. (2.3)
Then .7 is called a contraction semigroup on C, and one writes 7 € Q(C).
It follows immediately from (2.1) to (2.3) that ¢ — T(t)f is a strongly
continuous function from [0, <o) in C for each fe C. Furthermore, one has
for an fe C (cf. [14]): If
liminf A} T(h)f — fll = L < oo, then | TWf ~fll=t- L, (t=0).
-0+

In the particular case L = 0, this implies

1T =Sl =olt) t >0+4) = T@)f=f  (1:=0). (2.4)
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For purposes of notation let us recall several elementary concepts. A
subset ACX X X is called a multivalued operator in X with domain
D(A) = {f; Af # @} and range R(A4) = J{Af;fe D(A)}, where Af:=
{g;1f. g] € 4} for fe X. If B is another multivalued operator in X and A 1s
real one sets

A+ B={fg+h;[fgledlf hleB,
M = {[/, Ag); If; gl € 4},
AB = {[/,gl; [f. h] € B, [h, g] € A for some he X},
A ={lg.f1; [ gl € 4.

A singlevalued operator A4 in X is regarded as that special case of a multi-
valued one for which Af contains exactly one element for each f'e D(A). Let
us set J, i= ([ + A4) and A4, :== A" — J,) for A £ 0; then D(J,) ==
D(A,) = R(I 4- A4), R(J,) = D(A). A subset 4C X X X is said to be
accretive, provided that J, is a singlevalued operator for A > 0 and

=gl <If—gl  (f,geDU), (2.5)
or in an equivalent form (see Kato [17]), also to be used, A4 is said to be
accretive, if for each [f;, g le 4, i = 1,2, there exists f* e F(f; — f3) such
that (g, — g,,f ™) == 0. Here F denotes the duality map of X into X* which
is a subset of X x X* defined by

F(f) ={f*eX* (L f*) =1fF=[f*]3,

for each fe X.
An accretive operator determines a semigroup in the following sense.

Tueorem 2.1 (Crandall and Liggett [13])).  Let A C X X X be accretive and
R(I 4 X4) D D(A) for A = 0. Then the limit

T()f: = s — lim (I = (mA)"f, 26)
exists for f€ D(A), t > 0 and defines a semigroup F~ == {T(1); 1 = 0} € Q(D(A)).

If a semigroup 7 € Q(C) is connected with an accretive subset 4 C X x X
by the limit relation (2.6) for each f'e C,then one says 7 is generated by (— A4).
We shall also make use of the following facts (see [13, 17]) which are valid
under the assumptions of Theorem 2.1,

ST T2 Af (feDA), 27

S == ATAS L (fe D(4),  (2.8)

s—lim J,f = 1, (feD(4)), (2.9

. A, fle4  and (A /i <14  (feD(4). (2.10)
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3. Basic COMPARISON ESTIMATES

In view of (2.2) a semigroup 4 = Q(C) is an approximation process
tending towards the identity operator [ for ¢t — 0 in the strong topology
of X. The aim here is to characterize the approximation behavior of this
process by structural properties upon the elements fin X. This will be carried
out in case .7 is generated by a multivalued operator (— A) in terms of which
the structural properties will be expressed. Therefore from now on we assume
that the hypotheses of Theorem 2.1 are satisfied. At first we wish to compare
the norm of 7(r)f — f with that of J,/ — f and to relate the latter to an
abstract modulus of continuity given by the K-functional,

K(t, f; D(A), D(A)) = K(t. f): = inf (If— g+t Agl),

yeD(A4)

(f e D(A), t > 0).

This is a monotone increasing function with respect to ¢ & (0, «0) for each
fe D(A), and satisfies,

K(t,f) < 11471, (feD(4)). (3.1)

If A is lincar, K(1, ) defines a function seminorm on X (see, e.g., [6, p. 167]).
In the linear case it is standard to compare K(t, f) directly with the semigroup
operator 7(t)f, using the fact that [, f ;- t71 ff, T(u)f du belongs to D(A) and
MT(t)f — f] = Al f for each f'e D(A), A being the infinitesimal generator
of the linear semigroup. In the nonlinear situation, however, these properties
are in general not valid. We therefore work with the resolvent operator J,
instead of [,. By (2.10) it has properties corresponding to those of /,.
namely: J, /¢ D(A)and -1/ — J, f] € AJ,ffor each [ D(A4). This will allow
us to estimate K(z, f) by i J,f — f'|. To compare T(¢)f and J,f we apply an
important result of H. Brézis [3] which was extended by M. G. Crandall and
T. M. Liggett [13] and [. Miyadera [19]. Its most general form stated in
{19, p. 250, formula (2.11)] reads:

LEMMA 3.1. Ler the hypotheses of Theorem 2.1 be satisfied. If f € b?;ﬁ and
[fo» 8ol € A, then

(TS~ £ 69 < | <o fo— T()f >, (3.2)
Y0

for each t = 0 and each £* € F(f — f,). Here

{&osto = T()f s = sup{(go. /)i f ¥ €F(fo — T(1) )} = (&o>.12%),



APPROXIMATION BY SEMIGROUPS 209

where f,.* is an element of F(fy — T(7) f) for which the supremum is actually
attained.

Whereas [13] and [19] used formula (3.2) for t — 0+ to deduce

TOr=] g

sup lim sup ( < &> So— s,

gxcFf—f)  t-0+

we will avoid taking limits since we need (3.2) for each fixed # > 0 in order to
establish the inequality (3.5) below. Moreover, an elementary inequality
(see [16]) will be used in the following:

Inequality. For any a,be X, f* € F(a) and g* € F(b) one has

Aa—b,g") <llal® —1bIF <2Aa — b, f*). (3.3)

THEOREM 3.2. Under the assumptions of Theorem 2.1 one has for f € D(A)
andallt >0

| TV ~ [1 < 41 — £ (3.4)
10/ =f1 <200 [ ITOf ~fldm 421 TOS =Sl B9
K@ f) <20 1if — 1. (3.6)

19 — 11 < 2K(t, ). 37)

Proof. By (2.3), (2.7) and (2.10) one has

TS [l <ITOf = TO IS+ TE) Tof — TS+ [ — S
S 20 =Sl + 201 AL | < 4TS — S

yielding (3.4). For the proof of (3.5) we make use of (3.2) with £, = J,f and
gy = A.f. Then one has

(T 1.8 < [ (= LA f) (38)

for each &* € F(f' — J,f) and some f,* e F(J,f — T(7) f), t > 0 being fixed.
The left-hand side of (3.8) may be estimated from below by Schwarz’
inequality by

(T — £, €5 = =T f — fIHI I f — 1 (3.9
noting that || £* ] = i J,f — f|l. For the right-hand side of (3.8) we use the
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first inequality in (3.3) witha = f — T(?)f, b = J,f — T(7)f and g* = f,*.
This yields

2f = LSS <IT@f = SIF =S — TR

Moreover, since

[ Jof = T2 20 —SIP TS = f1F =200 = T f — f1,

one has

20f =JSLLY) < [ = fII+ 21T f =TS = f1l. (3.10)

Combining the estimates from above and below for (3.8), namely (3.9) and
(3.10), one obtains (3.5) by dividing the resulting inequality by || J.f — [
Inequality (3.6) follows from,

if g is taken as J, f, noting (2.10). Concerning (3.7), let g € D(A) be arbitrary.
Then g = J,(g + tg’) for each g’ € Ag, and by (2.5)

WIS =Sl << I Jof — g +1gh +ILf—gl
Slf—g—wil+ilf—gll <2lf—gi+tlg'l)

Taking the infimum with respect to all g’ € Ag followed by that with respect
to all g € D(A), (3.7) now holds, and the proof is complete.

As a first application of Theorem 3.2 we obtain a characterization of those
elements fe D(A) which are approximated by T(¢)f with order O(t%).

COROLLARY 3.3. ﬂﬂer the hypotheses of Theorem 2.1 the following are
equivalent for an f € D(A):

(i) [T@)f—fl = 0@,
(i) S —fi = O(*),
(i) K, f) = Ot

Note that these assertions are only of interest in case 0 < o < 1, just as in
the linear situation. Indeed, if « > 1, then (i) implies that 7(¢) f approximates
f with order o(t), t — 0--, giving T(¢t)f = f for each ¢ = 0 by (2.4). Further
characterizations of (i) that are only valid in case « == | are left to Section 5.
We also refer to the concluding remarks there concerning an interpretation
of the two different cases 0 << « << 1 and « == 1, as well as for the history
to the matter.
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4. INTERMEDIATE CLASSES

The purpose here is to formulate the above results in the framework of
intermediate classes. To this end, we now gather all elements having a definite
approximation behavior into a set. First, let us introduce the functional
D, (¢ >0,1 < g < o) defined on the set of positive measurable functions
g=g1),0 <1t <1,

gUo1 (g () d’/t]lm’ (I < g < o),
s Qess sup (17°g(1)), (g = o).

0<é<1

DEerFmNITION 4.1. For a > 0,1 <{ g <{ o0 we define

[AlL,: = {fe D(A); D, (I T()f — fIl) < o0},
[Al],: = {fe D(A); Do (I Jof — f1) < oo},
[4)5, 1 = {fe D(A); B, (K(t, f)) < o).

Before showing the connection between these classes let us mention some of
their elementary properties which, for simplicity, we only state for the sets

(4., -
LEmMMA 4.2.
(a) [A]gl,q C [A];‘Z,q (0 < Xy < O‘l)a
() [AF, CIAL, (1 <g <g < o),
(c) Iffeldl,, then, ast— 0+,

ITOr 11 = o ST

(d) For0 <a<l,1<g<<wand0 <a<1,qg = o onehas
D(A) C [A]L, C D(A). 4.1
In particular, for f€ D(A),

(= Dy (S <)

O (Il TS — fi) < R 7= o

The proofs follow along the standard lines of the linear theory. Note that
it is only necessary to study the sets [4]] , for those values of « and g which
are specified in part (d) (cf. the remarks following Corollary 3.3). Further-
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more observe that (4.1) states that the classes [4]7 . are intermediate between

%, q

D(A) and D(A4). We now come to one main result of the paper.

THEOREM 4.3. Let AC X X X be accretive and D(A) C RU + AA) for
A>0If 9 = {T(t) t == 0} is the semigroup generated by (—A), then for
O<a<,l Kg<wandQ < a < |, q = o,

[0 = (A1 = (Al
In particular,

Do M T =S < 4Dy (1 Jof — f) < 8D, (K2, f)) (4.2)

and
®a,q(K(t’ f)) § 2q§uq(” th”f”) (43)
([(xg + 177+ 1) B (1 < g < ),
S D1y APl TOS =D D

The proof follows from Theorem 3.2. Concerning the second part of (4.3),
which results from (3.5), note that by Hoélder’s inequality for « > 0

P, q (17 (( : | T@)f — 11 dv)

G Y (1 < ¢ < o),
'(a J ]) 1 q’r)a !I(‘; T(t)f ﬂf.f‘) (q _ (X))

Observe that the case ¢ = oo, 0 <<« << 1 is already covered by
Corollary 3.3. Theorem 4.3 seems to be the first result on nonlinear semi-
group approximation in the setting of intermediate classes contained in a not
necessarily reflexive Banach space. In the case of a Hilbert space H we refer
to a note of D. Brézis [4]; particularly compare his inequalities

WIS — g < | Jf —fllg << 30T — [l
with (3.4) and (3.5).

5. RELATIVE COMPLETION AND SATURATION

For « = 1, ¢ = oo there is a further characterization of [A]. ,, namely
via the concept of relative completion, the linear version of which was
introduced by E. Gagliardo (see [1]). In the framework of approximation
theory it was first used by H. Berens [2] (see also {8]).
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DermImION 5.1, The completion of D(A) relative to D(4), denoted by

D(A), is the set of elements fe F(;T) for which there exists a sequence
{fn} C D(A) such that

s — lin;f,, =/, 5.1
i\ Af, | << M for all n, M being independent of ». (5.2)

Before proceeding we need some further notions concerning accretive
operators A: If D(A)CSC X, A is called maximal accretive on S if 4 is
accretive and any accretive extension of 4 coincides on S with 4, ie., if
BC X x Xis accretive and 4 C B, then Af = Bf for each f€.S. 4 is said to
be m-accretive (hyper-accretive) if A is accretive and R(I + A,4) = X for
some A, > 0. A is called almost demiclosed if [/, ,g,0e A4 (n = 1,2,..),
s—hm,_ f, =f w—lm,.,g, =g imply feD(4). If, in addition,
g € Af, A is called demiclosed.

For the next proposition we use a counterpart of Lemma 3.1 for the
resolvent operator J, , the proof being simple.

Lemma 5.2, Let A be accretive. If fe D(J,) and [, . g,) € A, then for each
A > 0and each E* € F(fy, — f)

(f = Dh €% < Mgy fo — L oe. (5.3)

Proof. Since [f,, gl e A and [J,f, A"W(f — J, f)] € A, A being accretive,
there exists an n* € F(f, — J,f) such that

(f — It n*) < Mg, n%).

The right-hand side of this inequality may be estimated from above by
A gy Jo — I fDs, the left-hand side from below by (f — J,f, £€*) for each
E* e F(fy — ), the latter following, e.g., from (3.3) if one substitutes there
a=fy—JILfib=fy —f.f*=n*and g* = &* Thus (5.3) is proven.

In reflexive spaces X the relative completion may be characterized by
Proposition 5.3.

PROPOSITION 5.3.  Let X be reflexive and let the hypothesis of Theorem 2.1
be satisfied.
(a) If A is almost demiclosed, then D(A) = D(A).

(b) If A is demiclosed or maximal accretive on D(A), then

CAfL= LAV = im AL = (e D). (54)
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— —

Proof. That D(A)C D(A) is obvious. If fe D(A), then there exists
{f.} C D(A) satisfying (5.1) and (5.2). For each A > 0 one has

AT = lim [ Aufll << limsup | Af, 1 < M, (5.5)

by (5.1), (2.8) and (5.2). Since X is reflexive, each sequence {4, I,
lim,,... A, = 0, contains a subsequence {4 Ay, f3} such that

Wo— 11{5} Ay, S g, (5.6)

for some g € X. Now, if 4 is almost demiclosed, then /& D(A4), proving (a).
This part would also follow by applying Lemma 3.8 in {17]. Concerning (b),
if in addition, A is demiclosed, then g € Af and

[ Af| < g < liminf Ay, £ < limsup | Ay f1 < ASL

This yields
imiidy, Jli= 147 =g

for any sequence {A,,}, and thus (5.4) follows. The same conclusion is valid if 4
is maximal accretive on D(A4), provided one can show that g € Af. For this
purpose we make use of Lemma 5.2. Thus for each [f;. g,] € 4 and each
E* e F(f, — f) one has by (5.6}

(g, €% - ]in;lﬂs(up & to -IA,,,,./(V;Z\» S ge s fo o e

the latter inequality following since the map <-. -, X ~ X — R is upper
semicontinuous (cf. [13]). Now, there exists A*e F(f, - f) such that
(8o fo — e = (gy. 1Y), F(f, — f) being weak* compact. Hence

(g, g*) /\\ (g() Al h*)

Since A is maximal accretive, one may apply Lemma 3.4 in [17] to the latter
inequality, giving that [/, g] € 4. This completes the proof of the proposition.

The following theorem gives the connection between the notion of relative
completion and the intermediate sets of the foregoing section.

THEOREM 5.4. Under the same assumptions as in Theorem 4.3 one has

4] . = D(A).
Proof. If fe[All .., then supgesey t1 1 T(t)f — 1l = M, << o0. By (3.5)
it follows that

~t
DA< 22 | e My dr - 2My = 3M, .

0
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{J. f} is a family of elements from D(A) satisfying (5.1) and (5.2) by (2.9) and
(2.10) and therefore fe D(A). If, conversely, f€ D(A), then by the same

arguments which yielded (5.5) we have || 4,f|| <X M for all t > 0, M being
a constant. This gives by (3.4)

Dyl TS ~ 1) < 4M,

implying fe [A]] . -

Theorem 5.4 (and Theorem 4.3 for « == 1) combined with the o(¢)-assertion
in (2.4) gives a result on saturation—or on the so-called optimal approxi-
mation—of the process .7 == {T(¢t);t == 0} for t — 0+

COROLLARY 5.5.

(a) Under the assumptions of Theorem 2.1 the semigroup I € Q(E(,T))
generated by (—A) is saturated with order O(t), and iis saturation (Favard)
class [A)] . is characterized equivalently not only by [Alf. and [A]]..,

respectively, but also by D(A).
(b) If, in addition, X is reflexive and A maximal accretive on B(A_), then
[4)7... = D(4).

Thus, interpreted in the framework of approximation theory, Theorem 4.3
yields for « = 1 an equivalence theorem on optimal approximation and for
values o, 0 < « < 1, an equivalence theorem on nonoptimal approximation.
Corollary 5.5 in the setting of a nonreflexive Banach space X was announced
in the author’s note [22] answering a question posed by P. L. Butzer and
J. R. Dorroh on the occasion of an Oberwolfach Conference (cf. [7]). In this
connection, Crandall [12] showed that

Hminf 11| T() f— fi = lim X[ J,f— f], (5.7
150+ A-0+

for each f'e D(A), and regarded the set of those f for which (5.7) is finite as
a “‘generalized domain™ of 4. This result was forwarded to the author after
the appearance of [22]. For the linear background to the Crandall result
see P. L. Butzer and S. Pawelke [9]. Part (b) of Corollary 5.5 for the reflexive
case 1s to be found in Miyadera [19]. Previously Brézis {3} had proved this
result under the additional assumptions that A is m-accretive and X*
uniformly convex.

However, the investigations of these authors and others in this field
(see, e.g., [10]) were not so much concerned with the approximation
theoretical point of view but with the differentiability of the semigroup
generated by (—A). still an open problem in the general nonreflexive case.
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Perhaps the viewpoint of optimal approximation of this paper may be of help

in

these investigations.
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